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SUMMARY

much greater than that of a uniformly illuminated aperture, is thus a
practical rather than a theoretical one. The same is true for the
linear array of given length as for the continuous aperture if no limit
.- Is set to the mumber of elements. Even when this number is limited by

the adoption of half-wavelength spacing, the broadside power gain is
not 2 maximum when the amplitudes and phases of the elements are
equal, unless the elements are ideal isotropic point-sources.

(1) INTRODUCTION
In a remarkable paper! on the theory of linear arrays, S. A.
i Schelkunoff has shown that the power gain obtainable from an
aerial array of given length may be increased indefinitely, provided
‘ that the number of elements in the array is correspondingly
f increased. Until the paper appeared, and indeed since, it has
. been widely believed that the power gain of an aerial system is
theoretically limited by its size. In particular, it has been held
that the greatest power gain in the direction normal to a plane
radiating “aperture’ is obtained by means of an equi-phase field
distribution of uniform amplitude across the aperture. This
belief probably arose in the first i nstance from a misunderstanding
of the role of those waves whose phase gradient across the
aperture is even greater than that required to swing the principal
}* direction of radiation away from the normal and into the aperture
plane itself, i.e. greater than 27 radians per free-space wavelength.
It is the purpose of the present paper to set out in mathematical
K form an exact two-dimensional theory of aperture-distributions
and, by including these waves, to suggest the theoretical possi-
bility not only of unlimited power gain in any given direction, but
of producing, from an aerial system of given finite size, a radiation
pPattern approximating to any specified shape as closely as
desired. The treatment differs essentially from Schelkunoff’s,
and it may be applied equally well to continuous source-distribu-
tions of field as to arrays of discrete source elements.

. (2) GENERAL DEFINITION OF AN APERTURE IN AERIAL
PROBLEMS
The term “aperture” is now widely used to denote the effective
radiating area of a directional aerial, such as the mouth of a
paraboloid reflector, or even the area covered by a broadside
array of dipoles. Since the word is often used where no aperture
in the physical sense exists, it is worth attempting a generalized
Rdefinition.

J;?\‘—‘?'Q__gsider the ideal situation in which an infinite plane divides
fﬂaﬁe I'ato two regions, one being completely “free,”” while the
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It appears that it is possible to approximate as closely as desired
to a spécified radiation-pattern by a suitable distribution of field over
an aperture of. given size, though the necessary co.cents in the con-
ducting elements of the source would in general be prohibitively large
in comparison with the power radiated. The difficulty of obtaining
a high degree of approximation, and in particular a power gain very
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other contains an ettromagnetic source which is radiating
power into the free half, Some power will, in general, flow across
this plane at all points, diminishing to zero at very large distances
from the source. Many practical sources, however, are such
that the position of the plane may be so chosen that the power
flux across it is zero (or substantially so) except over some finite
region of the plane. Under these circumstances, that part of the
plane through which the flow of power is confined may be
termed an aperture even théugh no physical hole exists.

(3) AN ANGULAR SPECTRUM OF INFINITE PLANE WAVES

A quite general field in the free half of space bounded by the
aperture-plane may be expressed as a combination of infinite
plane-waves, provided that other than purely real directions of
propagation are included. Whilst these other directions are
included here, simplifications and idealizations of a different
kind will nevertheless be made.

Let rectangular co-ordinates be chosen (Fig. 1) such that Oyz

¥ '\'_\02'5

& Direction of
propagation

T

Fig. 1.—Co-ordinate system.
The z-axis is perpendicular to the plane of the paper.

represents the aperture-plane and the positive x-direction belongs
to the free half of space. Only fields which do not vary with z
will be considered, the entire analysis thus being rendered two-
dimensional. For further simplicity, suppose that one of the
field vectors is everywhere parallel to Oz. The electric vector &
will be so chosen, though symmetry between & and H enables
ZyH to be interchanged with & throughout, where Zy is the
intrinsic impedance of free space.

An infinite plane-wave travelling in the direction making an
angle # with the axis of x may now be specified by the equations
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e rx e D plane, though there is a continuous flow of power parallel to it.*
ZyH, S A exp [_4 27j (7\ cos 0 + y sin 9) cos 0 . (3)  Such types of wave, for which sin 0 is real but numerically greater
than unity, are well known. They occur, for instance, outside a
hich total internal reflection is occurring

A is an arbitrary complex amplitude dielectric boundary at w

& 5 and H, are every- (sin A being given as greater than unity by Snell’s Law). Another

well-known example is a cut-off waveguide carrying the Hy,
ay be mode, in which two waves travel at angles -+ arc sin (AJ2d) with
imension parallel to H.

the walls of the guide, where d is the d
d sufficiently general for the purposes in

gation. The Having set up 2 fiel
1l be denoted  hand by superimposing infinite plane-waves of angular spectral
density P(f), it is of interest to discover the physical interpretation

of this factor.

omitting the time factor.
and phase factor; A is the wavelength, €.
where zer0.

Subject to the above lim
obtained by taking a combination of
relative amplitudes, phases and directions of propa;
dependence of amplitude and phase on direction wi
by P(H)db, which now replaces the constant A. The non-zero
components of & and H in this combinagion are

& = — JP(B) exp [~ Zarj(; cos 8 + J—AJsin G)]de L@

z

itations, a quite general field m
plane waves of different

AR SPECTRUM AS A RADIATION
PATTERN ;
3 In order to identify P(0), it is necessary to explore the field at
ZH,=— J-P(B) exp \:,_ 27j (J_C cos 0 + Y sin 8)] gin Adf . (5) large distances from the origin by deriving the asymptotic
A A expansions for the integrals (4), (3) and (6). It will be sufficient
to write down only one of them, &, being the most convenient.
Let polar co-ordinates r, ¢ be chosen with the previous origin

z.H,= | PO [—2 (2 eos0 e—Jco 0do . (6)
ofy J (6) exp frrj(Acos b in ) s ot

The limits of @ require careful consideration. Since we are con-
cerned with positive values of x only, real values of A will be i 2
g in the other ~Then €, ¥ qb) = — J-P(B) exp [# 27:]'7\ cos (0 — d)):\dﬁ . (®)
i
c

confined to — mf2 < 8 < 7/2. Values of 8 lyin

two quadrants would correspond to plane waves travelling in
however, certain

(4) THE ANGUL

x=rcoag, y= rsin ¢.

approximate evaluation

from infinity, and are excluded. For generality,
complex values do need inclusion. These must be selected in  If7 is large, this is of a form suitable for
ane-wave does not tend Dby the method of stationary phase.2:3 Briefly, the important - &8 wheni
ood of = &, since & equat

such a way that the corresponding pl

exponentially to infinity either with positive x or with positive or ~ Part of the integrand lies in the neighbourh
negative ¥, 1.€. the coefficient of x in the expression values of & which differ significantly from qb make the rate of
change of rcos (@ — ¢) with 0 very large along the real axis.
= (J_c Tl Yoo B) @ The integrand is therefore highly oscillatory on the real axis and, .

A ey TR Sl except near 0 = [ cancels itself out under the integral signf for
sufficiently large values of r. Along those arms of the contour of
must 1ot be allowe ie nor must the jntegration which Tun parallel with the imaginary axis, the
coefficient of y have any real part, positive or negative. We  integrand is almost completely damped out when r is large. In
the neighbourhood of 6 = é, P(0) may be replaced by P(¢) and

therefore include only the complex values
3 brought outside the integral.

d to have a positive real part,

=2

o s . -
= -+ positive imaginary terms,

: Thus ‘é’z(% :;5) ~— P(«;S)L

PR = % G
f=— > - negative imaginary terms,

X

p [— 2mjr cos (6 — ¢)]dﬁ C)
/2 A

evaluated by expanding the

The remaining integral may now be

the contour of integration, C, being as shown in Fig. 2. These cosine,
waves decrease exponentially in the positive x-direction. Further, g =
£(n )=~ _ 2af)) @ Z—Jdﬁ .0
5 o P(¢) exp ( 21 3 _c:p j A(G ¢)

d beyond the region

f no concern agz_a.iu
(10), which

The fact that the integration is now performe
of validity of the expansion of the cosine is O
owing to the oscillations of the integrand. Edn.
snvolves a standard definite integral, reduces t0

: P(d) exp ( g zwj%) ‘ A
o)
distances

The function P gives the dependence of the field, at large refore
from the origin, on bearing from the origin, and may the ;
be identified as a conventional angular radiation-pattern OF Pl

diagram. :

3 : 3 = * Perhaps sﬁ:rpiisingly,
of integration in the complex f-plane. there is a continuous Tang
and a suitable choice of P(0) could effect complete cancellatio

Fig. 2.—Contour

the componeli. . A % Certain restrictions on the fanctio
D ¢ of & and H in the Qyz-plane are 1 quadrature,  the field is such’ as can be produced i
automatically satisfied. (They would not be satisfied for 2 single

so that there is : :
no associated mean flow of power across this  ahieh makes P an impulse function.)




THE RELATION BETWEEN RADIATION PATTERN AND
; APERTURE-DISTRIBUTION

1, Oyz represents the aperture-plane. The two
ngential field componcnts in this plane are, from eqns. (4)

d (6),
5’2(0. %)) = — jP(B) exp (— 27rj§ sin B)dﬂ . {12)
c

Z,H, (0, ;\i) = J;P(G) exp (— 217;% sin 3) cos 0df . (13)

om this point onwards, it is convenient to omit the indication
at x is zero in the aperture-plane, and to express the radiation
ttern in the form p (sin @) instead of P(f), since sin 0 rather
an 8 is the significant angular variable. The functions P and p
different, but the dependence on @ is the same. The contour
integration in the sin # plane is merely the real axis. Thus,

¥ p (sin 6)
g z(;) = JW o (— ij;‘—] sin §)d(sin 6) . (14)

ZOH},(‘;) = Jp (sin 6) exp (f 27rj% sin 9) d(sin ) . (15)

whence by Fourier’s theorem are obtained the well-known
“equations

#stitution of an arbitrary function p (sin #) will give distributions
_@0f& and H which extend between yfA= 4 co. If an additional
4 :’:" L bostulate, such as

T H,([N) =0; |pA|>1W . (18)
¢ made, the mathematics becomes more realistic, as this condi-
on is a way of ensuring that the field is compatible with a source
f finite size. But eqn. (18) cannot be satisfied for an arbitrary
function p (sin ) in egn. (15). As a result, it has often been
g Upposed that it is impossible to find a field-distribution over a
finite aperture which will exactly reproduce a specified radiation-
® Pattern. Yet it must be remembered that the real radiation-
dttern extends only from sinff = — 1 to & 1. In what is
| “Onveniently termed the imaginary region of the pattern, for
“Which !sin ﬁl > 1, any functional form may be assigned to
(sin #) without affecting the distant radiation field. There is
erefore a considerable choice of distributions of A over the
Derture plane which will produce the same radiated field. Tt is
t now suggested that one such choice will exactly satisfy
‘ondition (18), but what the authors do suggest is that fields
an be constructed which both satisfy eqn. (18) and approximate
& closely as desired to a given p (sin 0) in the range of real angles.
+lle distinction is significant as the actual limit would not appear
4 10 be attainable, owing to lack of convergence of p (sin £) in the
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imaginary region and consequent infinite amplitudes in the
aperture.

The foregoing remarks will become clearer in the light of the
examples to be given in the following Section.

(6) A SYNTHESIS THEOREM AND ITS IMPLICATIONS

“By suitably distributing the field over an aperture of given
finite width, specified values can be assigned to the radiation
pattern in any finite number of directions.”

The proof rests on two facts. First, radiation patterns and
their corresponding aperture-distributions may be added
linearly, and secondly, it is possible to define’an unlimited number
of linearly independent radiation-patterns and associated field-
distributions over a given finite aperture. (One might, for
example, divide the aperture into n sections, and illuminate each
separately.) Let the radiation pattern be specified in » directions
sinf,.. Then if p, (sin ) are n linearly independent patterns
obtainable from the given aperture, a composite pattern having
the required values is

5
P =24, (19)
where the constants 4, are determined from the simultaneous
equations

p(sinb) = 3A.p,(sinb), r=1,2,...n

This result would be of but little value were it not possible to
infer the behaviour of the composite radiation-pattern between
the directions in which values are assigned, a behaviour which
depends on the choice of the component patterns. In this
connection, one should again observe that the pattern is of interest
only over the finite range of sin @ corresponding to real angles 8,
and that it is therefore possible to choose the directions in which
the pattern is specified at as close a spacing as desired. As the
number of directions and specified values is increased, and the
spacing decreased, it is not obvious that the composite pattern
will converge to a smooth curve over the range of real angles;
in fact it might fail to converge altogether between the assigned
values. Whilst no proof of proper convergence has yet been
devised, intuition, together with examples such as those follow-
ing, would indicate that trouble lies not in the real range but
outside it. The more one attempts to force the radiation pattern
to converge to an arbitrarily assigned functional form by fixing
more and more values within the real range, the greater does the
pattern become in the imaginary region. This results in very
large reactive fields over the aperture; fields which would
probably become infinite, except in isolated cases, if the limiting
radiation-pattern were attained. :

Fig. 3(a) shows a beam 60° wide between zeros, obtained
from an aperture one wavelength across. For comparison, the
pattern from a uniformly illuminated aperture of the same width
is shown dotted. The aperture-distribution (here defined in
terms of H,) which will produce the narrow beam is shown in
Fig. 3(b), the scale being such that unit field over the aperture
produces the dotted pattern in Fig. 3(z). If a distribution of — 1
were superimposed on this, the radiation pattern would consist of
the full curve minus the dotted curve, and the main beam would
disappear! The narrow beam was obtained by adding together,
suitably weighted, a number of patterns of the form

sin [7W (sin @ — s/ )]
W (sin f — s/ W)

This expression represents the pattern from an aperture of width
WA, illuminated uniformly in amplitude but with a linear phase
slope amounting to a total slip of 25 radians across the aperture.
It was derived from eqn. (17). In the present example, ¥ is

(20)

p, (sin ) = (21)
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Fig. 3.—Radiation patterns from (z) an aperture of width A, and
(b) corresponding apperture distribution.

Apperture distribution shown in () produces the radiation pattern shown by full
curve in (a)., [The vertical scale of (b) is such that unit field produces the dotted
pattern of (a).]

unity. The simultaneous equations (20) were used to force the
composite pattern through unity at sin § = 0 and through zero
at sin@ = 4+ 1, + %, and - 1. Values of s in eqn. (21), were
chosen to make s/1¥ correspond to the specified values of sin 6,
a procedure which, judging from the authors’ numerical work,
appears to avoid any tendency for the composite pattern to
oscillate violently between its fixed points. The solution yields

the following expression for the resultant pattern:

p (sin 8) = 50 000-00p,
— 66 815°60(p_
+ 58 434-91(p_
— 16736:79(p_; + py)

The individual functions, p,, never exceed unity, and in the real
range of @ their resultant never exceeds unity. In the imaginary
region, the expression has very large values, and it will be shown
later how this results in a correspondingly large field over the
aperture. By proceeding in a manner similar to this example,
and using more equations of the form (20), the beamwidth could
be made indefinitely small and the gain indefinitely large, or
indeed one might approach any required shape of radiation
pattern.

It ‘has been mentioned that the component patterns may be
selected quite arbitrarily, provided that they are linearly inde-
pendent. There is one particular choice which gives a specially

e

1
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+
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clear insight into the problem. It consists of egns, Q) wi F
integral values of s only. These represent component tth
from individual terms in a Fourier-series representation of
aperture distribution.
p (sin 8) be specified at

sinfl = rfW .

equations are
pUIW) = AP (W)

- = J’ Lr=g3s
and since prfW) = 10, = s} 25)
the eqns. (24) immediately reduce to
prfW) = A, .6
The composite pattern is therefore o
i &y (I

and the corresponding aperture distribution is

N ) (). <o
z(3) = :

% i

as may be verified most simply from eqn. (17). This particular
method of synthesizing a specified pattern has been described in
an earlier paper.4 Fig. 4 shows how the resultant pattern is

Resuitant

Fig. 4.—Component beams from Fourier-series analysis of aperture
distribution.

built up from a series of beams, disposed at a uniform spacing of

1/ along the sin f axis. They do not interfere at any of the

points where their zeros coincide, so that the single beam which
does not have a zero at any one such point has the exact strength
of the composite pattern in this direction. It will thus be seen

. that the behaviour of the radiation pattern from an aperture of

width WA is uniquely determined for all values of sin @ by its
value at intervals 1//. The number of such values within the
range of real angles is roughly equal to the number of half-
wavelengths across the aperture. If it is required, within the
range of real angles, to vary the behaviour of the pattern between

these values without altering the values themselves, it is nec i
n

to vary the strengths of the component beams lying I
imaginary region, whose side lobes make a small co
the pattern in the real range.
pattern, such as demands the specifying of values &
spacing than 1/# in sin f, may thus be obtained only_
ducing comparatively large beams in the imaginary reglon.
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Fig. 5.—Effect of imaginary beams.
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' (@) Curve A: patiern from uniformly illuminated aperture of width 2A.
‘Curve B: sum of two patterns whose main beams lie in the imaginary region.
Curve C: composite pattern, curves A and B,
(b) Aperture distributions corresponding to radiation patterns shown in (a).
* " Curve A’:aperture distribution to produce radiation pattern of curve A in (a).
Curve C’: aperture distribution to produce radiation pattern of curve C in (a).-

i

%' Fig. 5(a) illustrates the a‘bovc. Here, shown dotted, is the
{ pattern from a uniformly illiminated aperture of width 2A. It is
required to eliminate the side lobes without broadening the main
' beam. To some extent this has been achieved as shown by the
- full curve, whose composition is

pGin@)=p;— 1-5(p_3+p) . . . (29

i where p, is given by eqn. (21) with W = 2. Fig. 5(b) shows
he corresponding aperture-distributions. Note the considerable
‘increase in aperture field necessary to give the small increase in
gain. The reason for this increase may be seen by applying
Parseval’s formula5 to eqn. (17), giving

W )
ZQH_V(%) rd(@ _ | |pGin®pPdGind . (30)
5 :
—iW —

Le. the integrated square of the aperture distribution is equal to
the integrated square of the radiation pattern considered as a
function of sin f. In the above example, reducing the side lobes
has slightly decreased [| p sin 0)|2d (sin 6) in the range |sin 8] < 1,
Put has increased it very considerably outside this range. It is
Interesting to note that if the aperture distribution is produced
by currents in a conducting sheet, then the loss due to finite
Conductivity of the sheet is proportional to the left-hand side,
and hence to the right-hand side of eqn. (30). t
Eqn. (30) is not intended to be a power relation. In order to
equate mean power leaving the aperture to the power flow at
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large distances from the aperture, Parseval’s formula shduld be
applied jointly to eqns. {16) and (17), giving :

TWA o0
: AllpGnd)2, .
— | & Hdy = 57 W—d Gin®) . (D
—L+WA —o0
Taking real parts of both sides,
WA =/2
o %.@J.c‘fzf[;dv =35 |p(sin a0 . . (32)
—Wh =0 )2

since cos 6 is purely imaginary when sin @ is numerically greater
than unity. The left-hand side of eqn. (32) is the real part of
the complex Poynting vector resolved normally to the aperture

plane and integrated over it. It represents the mean power °

leaving the aperture. The right-hand side of the equation is
the mean power flow integrated over the polar diagram. The

imaginary part of eqn. (31) is also of physical significance. It

reads
WA 5 -1 5
e pGin O
= iﬁJ—ley v —ZZO{J};I j{\/(st@ L S

The left-hand side represents twice the angular frequency times
the difference of the mean values of the magnetic and electric
energies in the whole of the free half of space in front of the
aperture-plane.6 This difference is associated with energy stored
in the vicinity of the aperture, as distinct from energy travelling
outwards to infinity. That it will be large for radiation patterns
which are large in their imaginary region may at once be seen
from the right-hand side of the equation. In order that the aerial
system giving rise to the aperture distribution should present a
purely resistive load to the generator, a Jarge balancing reactance
would have to be incorporated behind the aperture plane, thus
forming a highly resonant and therefore frequency-sensitive
arrangement.

Tt may be concluded that a required radiation pattern in one
plane may be specified in roughly as many directions as there
are half-wavelengths across the aperture, uniformly spaced with
respect to the sine of the angle with the normal to the plane of
the aperture, without an excessively reactive aperture distribution.
An unlimited number of further values may be specified, but the
field over the aperture must then become very large. In parti-
cular, a radiation pattern giving a directivity very much greater
than may be obtained from the uniformly illuminated aperture is
always associated with a large aperture field. At a large distance
from the aperture, even in the principal direction of radiation, the
resultant effect is one of almost complete cancellation, the radia-
tion fields from each portion of the aperture nearly cancelling
each other out. If the radiation pattern is symmetrical about
the direction normal to the aperture, the resulting aperture
distribution, which is then purely real, contains portions of
large equi-phase field almost balanced by large anti-phase por-
tions. Yet it should be noted that even of purely equi-phase
aperture distributions, uniform amplitude does not give the
greatest directivity. For consider (Fig. 6) an aperture of width
I): discrete elements at the extremities of the aperture are more
directive than the uniform distribution.

(7) GENERALITY OF TWO-DIMENSIONAL TREATMENT

The purely two-dimensional treatment to which this paper
has been confined is a mathematical idealization, for the entire
field has been assumed uniform to infinity in the direction Oz
(Fig. 1). One consequence is that at large distances from the
source, the field falls off inversely as the square root of the distance
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Fig. 6.—Comparison of directivities from equi-phase aperture-
distributions.

(Section 4), whereas a finite source in three dimensions produces
a field falling off as the inverse of distance. The shape of the
radiation pattern in the xy-plane of an aerial radiating in three
dimensions, however, is independent of the aperture distribution
measured parallel to Oz, provided that the overall aperture
distribution can be expressed as a function of y only multiplied
by a function of z only. Consequently the two-dimensional
analysis gives one cross-section of the three-dimensional polar
diagram. Further, there is no reason why high gains should not
be obtained in three dimensions, because the synthesis theorem
(Section 6) may equally well be applied to three dimensions as
to two.

(8) LINEAR ARRAYS OF DISCRETE ELEMENTS

Suppose that the aperture is defined, not as a continuous range
but as a series of N discrete elements. It is then possible to
produce only N linearly independent aperture distributions, and
consequently only N points may be assigned to the radiation
pattern. Schelkunoff! gives a very neat method of forcing a
pattern from /N elements through one finite and N — 1 zero
values, and shows how to keep the zero values in the region of
real angles as the distance between the elements composing the
array is decreased. By placing a large number of elements close
together, very narrow beams can then be obtained from small
aerials, and at the same time the side-lobe level can be kept
extremely low. The pattern from a linear array may also be
synthesized on lines very similar to those elaborated in Section 6
for the continuous aperture. Tt will suffice to draw attention to
the single important distinction. The pattern from an array
whose elements are equally spaced at intervals d is

p(sin ) = $4, exp (2@’}\‘_{51']18 CAE e

where A4, is a complex number proportional to the amplitude
and phase of the nth element. The above is a repeating function
of sin 6 of period A/d. Control of the pattern is thus effectively
confined to a finite range, A/d, of sinf. For an array of N
elements, this limitation is precisely equivalent to there being
only N degrees of freedom, because there is room for only N
component beams of the type illustrated in Fig. 4 within one
period of the resultant pattern. It should also be observed that
a single period covers the whole range of real angles only if
the spacing between elements is 4A or less. If the spacing is

more than 1A, secondary beams may be produced because th
pattern partly (if not wholly) repeats itself within the re -
The special case of $A spacing is of some importance. . ¢ has
commonly been held that? the greatest power gain of such ap
array, when used as a broadside, is obtained by feeding the
elements with equal amplitudes and phases. Without qualifica.
tion, this statement is fallacious, being based on the hj
idealized assumption of fully isotropic sources in three dimep.

sions. The authors have performed the simple calculation (see

Appendix) for the power gain of a 3-element, 4\ spaced array
first of isotropic line-sources in two dimensions (for pedagogié
reasons), and secondly of parallel Hertzian doublets in three
dimensions pointing in a direction perpendicular to the length of
the array, and have found in each case that the greatest broadside
power-gain is obtained when the central element is fed with a
slightly larger amplitude than the outer ones. That the broad-
side power gain of a A spaced array of fully isotropic point-
sources is a maximum when the amplitudes and Phases of itg
elements are uniform may be deduced by noting first that eqn. (34)
holds in three dimensions if  is the angle of latitude in spherical

Polar axis

Fig. 7.—Special co-ordinate system suitable for isotropic point-
sources.

co-ordinates with polar axis along the length of the array (Fig. 7).
The total power radiated in one-half of space is proportional to

wf2  f2
J |p (smn 6')i2u cos Bdfdd

—mf2Y—rf2

where ¢ is longitude. This is proportional to

1
J]p Gm)dEnl) . . . . . ()
Ef
Parseval’s theorem applied to eqn. (34) states that
A2d
|7 (sin )|2d (sin §) = é}‘_,lAnlﬁ Al [
—M2d d ! i

the integral having been taken over one period of p (sin ). For
1A spacing this is identical with expression (35). Power densi{:y n
the direction # = 0 being proportional to |£4,[2 the gain 15
proportional to |XA4,|2/¥|4,|2. This is a maximum when all the
values of 4, are equal, as may be verified by regarding the numbers
A, as vectors in the complex plane, maximizing the numerator
with the denominator held fixed, and then minimizing the
denominator while holding the numerator fixed,

It is perhaps worth remarking that the above proof holds for
arrays spaced at any integral multiple of 1.

(9) CONCLUSION !

It has been seen that, in dealing with radiation problems, s o
rather than @ is in many ways the significant angular variable,
and that, far from being a mere mathematical fiction, complex
values of 6 corresponding to values of sin f numerically greater

than unity have a definite physical interpretation. In accordance
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gith this idea, a radiation pattern p (sin f) may be treated as a
- qction which exists over the entire range of real values of
"+1 0, though only that portion of the function whose argument
in the interval (— 1, 1) may be interpreted in the conventional
- anner as energy travelling outwards to infinity from the source.
the source is such that 1adiation is virtually constrained to pass
ough a plane aperture of width WA, and the distribution of
feld over the aperture can be varied at will, it is conveniently
i@gssible to assign arbitrary values to the radiation pattern in
ctions spaced at intervals 1/W in sin f. There are roughly
many such real directions as there are half-wavelengths across
eaperture. If directions for which [sin 9| > 1 are also included,
e behaviour of the pattern may be controlled between the
cified real directions. Such control is so weak that, to be
ective, very large reactive aperture-fields are necessary. Indeed,
nvergence to an arbitrary radiation-pattern, the width of
erture being held fixed, is generally associated with divergence
of the aperture field, making the absolute limit unattainable.

| Similar considerations apply to linear arrays of finite length as
'uo continuous apertures, except that an array of N elements has
only NV degrees of freedom and only N values may be assigned
the pattern. Convergence to an arbitrary radiation-pattern
an therefore be achieved only by increasing the number of
clements, and if the total length of the array is held constant in
the process the currents in the elements become large as soon
“as their separation falls below 1A.

¢+ In practice, no startling improvements over the conventional
gpe of aerial are likely, since even for small increases in per-
tformance (Fig. 5) the currents in the conducting elements of the
lsource become very large. Besides the increased copper-loss
thus incurred, the shape of the radiation pattern and the im-
gigedance of the aerial would be extremely sensitive to small
;@hanges of frequency, and the manufacturing tolerances for any
fpractical aerial could become prohibitive. If, for instance, we
decrease the amplitude distribution shown in Fig. 3(b) by one-fifth
wof the thickness of the line in the figure, the main beam would
disappear entirely. These examples, however, may give too
Pessimistic a picture of the practical possibilities. End-fire
arrays have their main beams near the imaginary region, and so
may be controlled more readily thdan broadside arrays. F. K.
Goward has shown$ how to add two beams with sin @ slightly
greater than unity to produce a worthwhile improvement over
the conventional end-fire array. This improved array would be
difficult to make, though perhaps not impossible.

- The authors do believe, however, that it is of some practical
importance to understand clearly the theoretical nature of the
limitations imposed on radiation patterns from sources of finite
size, and that the method of apertures is as convenient a way as
any of incorporating these limitations in a mathematical theory.
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(12) APPENDIX
Power Gain of 1A-Spaced Elements

Two examples will be given to illustrate that the broadside
power gain of a linear array whose elements are separated by £A
is not necessarily a maximum when the amplitudes and phases are
equal. The first example is two-dimensional and is the case of
three isotropic line-sources. The second and more practical
example is three-dimensional and consists of three Hertzian
dipoles. As has been shown in Section 8, it is only for isotropic
$A-spaced point-sources that the gain is a maximum with uniform
amplitudes and phases.

Fig. 8.—Linear array of three isotropic line-sources.

Fig. 8 represents a cross-section of three isotropic line-sources.
Let the outer elements carry unit current and the central element
a current 7, all the currents being in phase. Then the radiation
pattern is

p(sinf) = 2cos (wsin ) + I

The broadside power gain is

o _ 2P

j | (sin 6)[2d8
0

Evaluation in terms of the Bessel function J; gives
G = (2 + D2[2 + I2 + 2J4(2m) + 4LJy(m)]
This has a2 minimum when / = — 2 and a maximum when
[ = [2Jy(m) — Jp2m) — 1)f[Jy(m) — 1] = 1-40.

The gain for the uniform case, 7 = 1, is 405, whereas the gain
when 7 = 1-40 is 4-29, an improvement of 6 %,.

Fig. 9 represents three Hertzian dipoles at 4A-spacing along
Ox, carrying equi-phase currents (1, 7, 1) as in the first example.
Let Oz be taken as the axis of spherical polar co-ordinates. The
radiation pattern of each element is sin f, whence the overall
pattern of the array is

p (sin ¢, sin 0) = [2 cos (m sin ¢ sin 6) + ] sin 6.
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Fig. 9.—Linear array of three Hertzian dipoles.
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The broadside gain is
4ar| p(0, D2

On carrying through the integrations, one obtains
297 4 4 1
G= '1T2+I:’-/ 2 ey B _)
[ ( 7] 3 T = 3 i 24T
There is a minimum when [ = — 2 and a maximum when

I= (27 4+ 872)[(12 + 8n2) =~ 1-165

The gain for uniform feeding, I = 1, is 5-47, but the gain Wheﬁ
J=1-165is 551, The improvement is less than 1% and hence
of merely theoretical interest.

DISCUSSION ON

“IMPULSIVE INTERFERENCE

Mr. C. C. Eaglesfield (communicated): The paper is marred
by the continual use of the term “pandwidth.” While the
concept of bandwidth is useful in a rough engineering way, it
is frequently misleading when applied to a general investigation.

The difficulty is to define the extent of the band in such a way
that it is extricable from the general equations. This has led in
the past to the postulation of “‘ideal filters,”” but, as is well known,
this is indefensible mathematically. The transmissicn factor of
a network is a complex number, and, with certain limitations,
convenient assumptions about this complex number as a function
of frequency may be made. But it does not seem possible to
find any assumption which Jeads to convenient amplitude and
phase characteristics.

The implicit assumption made by the author for the band-pass
filter is that the amplitude characteristic is everywhere zero
except between two frequencies which he terms the cut-off
frequencies. (The difference between these frequencies he defines
as the pass band.) This assumption is not tenable, so that his
treatment has an appearance of rigour which will not deceive the
" mathematician.

In any case, the engineering interpretation is obscure. In
practice the cut-off frequencies must be associated with large
attenuation, but the question is: How much attenuation and with
reference to what point on the band? The usual practice is to
take as the pass band the frequency range over which the
variations of attenuation are comparatively small.

The usefulness of formulae containing bandwidth, such as those
given in the paper, is due to the similar characteristics of the
filters used in practice, which may be said to differ mainly in
frequency scale. é

One of the main deductions that the author makes from his
equations is that an increase of filter bandwidth does not change
the shape of the impulse response, but expands the voltage scale
and shrinks the time scale in the same proportion as the band-
width expansion. If frequency scale is substituted for bandwidih,
this property is very easily demonstrated for a low-pass filter as
follows: Taking as the filter impedance an unspecified function
of frequency, A(jw), the voltage across it due to an impulse of
current, p1, may be written operationally as V' = Alpp1 = f(D),
say. If now the frequency scale is expanded by a factor a4, the
new voltage is = A(p/a) p1 = aA(p[a) plal, and by an elementary
proposition this is equal to af(af), which is the result as stated.

Put crudely, the idea behind most noise suppressors is to keep
the interfering pulses very sharp and tall and then chop off their

* Paper by D. WEIGHTON (see 1948, 95, Part I1I p. 69).

IN AMPLITUDE-MODULATION RECEIVERS”*
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heads by an amplitude limiter. A subsequent filter, just fast
enough to pass the modulation, smoothes their rumps. :

As has been shown, an expanded frequency scale in the circuits
before chopping serves this purpose; it is possible that other
conclusions of the paper could be reached by modifying the
treatment on these lines.

Mr. D. Weighton (in reply): Mr. Eaglesfield raises the problem
of the validity of the term bandwidth applied to radio receivers,
where the mathematical abstraction of the ideal filter is not
admissible. I am indebted to him for pointing out that use of
the term “frequency scale” in place of bandwidth would make
the results more precise. It would, however, imply a restriction
of application which is not, in fact, necessary. Two of the main

data of design in any transmission system are, generally, the

limitation of frequency space available by interference from™
adjacent channels, and, when phase may be neglected, the highest
modulating frequency. This leads the engineer to deal in terms
of bandwidth and to adopt some convenient (though admittedIy
artificial) definition of the term. 1t was felt for this reasom,
therefore, that the formulae would be of little value unless written
in terms of bandwidth, even at the cost of some loss of precision.
It appears, in fact, that the formulae apply with fair accuracy
without insistence on any greater similitude of transmission
characteristics than is normally the case in radio receivers.

Tt should be noted that where the term “handwidth’ is first :

introduced (in dealing with the band-pass filter), the assum_ption
involved is that it is possible to find two frequencies outside of

which the response of the filter is very small, so that the i_utegratiqﬂ ]

may be limited to a finite range. This assumption is tenable 11t
almost all cases, and the results obtained are generally true t© a
close approximation. The need for a more precise definition
of bandwidth arises later and is discussed in Section 4, so that at
no point is any greater rigour claimed than the argument deserves:.
It is, of course, relatively simple to write the impulsive response
of a network in terms of a complex transmission coefficient am¢
to deduce certain properties of the output signal by operationa
means. There is, however, implicit in this calculation an assump-
tion that the impulse is of infinitely short duration, and with 2
similar simplification the Fourier approach reduces to a problem™
of comparable complexity. It is, moreover, important t@ inguire

into the limits within which the approximation is valid, and the -

use of the Fourier integral is more informative in this respect:

In general, this method was used since it shows more T€2 Y. .

the implication of the approximations which are necessary an
leads to a clearer physical picture of the operation involved.
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